National Repository of Grey Literature 129 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Analysis of stress field in the vicinity of fatigue crack in IPE made from stainless steel
Juhászová, Tereza ; Malíková, Lucie (referee) ; Seitl, Stanislav (advisor)
The master thesis is focused on analysis of stress field in the vicinity of stress concentration of stainless steel IPE beam loaded in tree point bending. Theoretical part includes introduction to fracture mechanics with basic terms, principles and variables used to describe fatigue behaviour of material. It concludes teoretical grounds of fracture tests which are future focus of the thesis, methodes used by numerical softwares and methodes used to obtain numerical results. Practical part includes comparision between two and three dimensional numerical models in three point bending, IPE model with different crack front shapes and plastic zone size. Numerical modelling was processed in Ansys Mechanical APDL. Thesis also involves results of experimental testing evaluated using numerical model.
Application of generalized linear elastic fracture mechanics on estimation of crack propagation origin from sharp V-notch
Štegnerová, Kateřina ; Máša, Bohuslav (referee) ; Náhlík, Luboš (advisor)
The master thesis is focused on estimation of crack propagation origin from sharp V-notch. Stress distribution around the tip of the V-notch is described on the base of generalized linear elastic fracture mechanics. The change of the stress singularity exponent caused by geometry of the V-notch and the vertex singularity is taken into account. The first part of the work is devoted to the estimation of the stress singularity exponent of the V-notch either from stress distribution around the tip of the V-notch or by using analytical solution. Formerly derived stability criteria are applied in the second part of the work. The origin of the crack propagation is estimated for several experimental specimens. The aim of this thesis is to compare the available experimentally observed data with results obtained using those criteria based on the application of generalized linear elastic fracture mechanics developer at the Institute of Physics of Materials Academy of Sciences of the Czech Republic. The finite element code Ansys and mathematical software Matlab were used for the necessary calculations.
Crack Propagation in Railway Wheel under Operating Conditions
Navrátil, Petr ; Schmidová, Eva (referee) ; Fuis, Vladimír (referee) ; Janíček, Přemysl (advisor)
This doctoral thesis was written under supervision of my supervisor Prof. Ing. Přemysl Janicek, DrSc. and under supervision of my specialist supervisor Ing. Petr Skalka, Ph.D. The thesis deals with the influence of various operating conditions on crack behaviour in in a wheel rim and/or tire. The dissertation topic was motivated by cooperation with Pardubice University, Faculty of Jan Perner. The first part of the thesis presents a literature search, which provides a current state-of-art in the field of contact loading, crack propagation behaviour under mixed-mode and thermal field generated during braking. The next part of thesis deals with the solution of the given problem and the obtained results are presented. Specifically, crack behaviour under various operating conditions including the crack growth rate is simulated. Also, an influence of thermal field on crack is investigated. The linear elastic fracture mechanics approach is considered to treat the above mentioned problems. Last part of thesis summarizes the obtained results which are discussed in a broader context.
Using Salome Meca computing environment to solve problems of solid mechanics
Ptáček, Tomáš ; Vaculka, Miroslav (referee) ; Vosynek, Petr (advisor)
Given bachelors thesis deals with solutions of basic tasks of body mechanics with usage of the finite element method (FEM). An open-source software Salome Meca with Code_Aster solver is used there. Basic formulas of strength of materials on which is FEM based are introduces in the beginning. Then is presented software Salome Meca with its solver Code_Aster. Followed by own solution of tasks, which contain structural analysis and series of examples for solving the fracture mechanics. Numerical solutions from Salome Meca are compared with analytical solutions, if some exist, and with solutions from commercial software Ansys Workbench.
Description of Stress and Strain States at Front of Inclined Cracks Loaded by Shear Modes
Roh, Marek ; Majer, Zdeněk (referee) ; Horníková, Jana (advisor)
The primary objective of this masters thesis is to assess the eects of the length of crack and the angle, of which is this crack inclined on the stress and strain states at its front for the test sample loaded under shear. The rst part of this thesis will analyze the individual approaches that lead to the description of the aforementioned conditions. The second part deals with the FEM model assembly, which will lead to the fracture parameters, the values of which will be compared in part three.
A study of the stress field near the stress concentrator at the bi-material interface
Krepl, Ondřej ; Klusák, Jan (referee) ; Profant, Tomáš (advisor)
The aim of this work is the solution of problems of the stress distribution near bimaterial notch tip or eventually the crack impinging orthogonaly the bimaterial interface, determination of stress singularity exponent. The first part is concerned with basics of linear elastic fracture mechanics, i.e. Irwin's concept of stress intensity factor. The second part is devoted to description of anisotropic materials by complex potencial theory. The final part is focused on calculation of eigenvalues of both isotropic and anisotropic materials and application of LES formalism on the calculation of stress singularities of the bimaterial ortotropic notch or the crack impinging orthogonaly the bimaterial interface.
Crack path calculation using linear elastic fracture mechanics
Bónová, Kateřina ; Malíková, Lucie (referee) ; Eliáš, Jan (advisor)
This diploma thesis deals with the different possible calculations of crack path. Specifically, it focuses on criteria based on maximum tangential stress, minimal strain energy density, crack tip displacement, and local symmetry. These criteria are used for calculations in ANSYS software to estimate possible crack paths on four simple structures. The thesis also contains the codes created in ANSYS. Using these, the crack trajectory of a given structure can be calculated by any of the four criteria described.
Numerical support for wedge splitting test on non-traditional geometry
Juhászová, Tereza ; Malíková, Lucie (referee) ; Seitl, Stanislav (advisor)
Bachelor thesis is focused on numerical support of wedge splitting test with non-traditional geometry. Numerical analysis takes place in program Ansys, defining behavior of models with modified entry parameters. Attention is focused on values of parameters characteristic for fracture mechanics; stress intensity factor and T-stress and functions describing their relationship to length of crack, evaluation of which is graphically illustrated.
Influence of a Free Surface and Gradient Change of Material Properties on a Crack Behaviour
Ševčík, Martin ; Kohout, Jan (referee) ; Klusák, Jan (referee) ; Náhlík, Luboš (advisor)
This thesis was written under the supervision of Assoc. Prof. Luboš Náhlík, Ph.D. and Assoc. Prof. Pavel Hutař, Ph.D. The topic of this thesis is the study of a free surface effect and gradient change of material properties on a crack behavior. The common theme of the work is a fracture mechanics description of a crack behavior near a material nonhomogeneity. Here, the material nonhomogeneity can be understood either as a boundary of a body (interface between body and surrounding) or as a continuous change of material properties. The thesis is introduced by a review part where the state-of-the-art of the concerned topic is described. This part presents several stress state descriptions in the vicinity of some general singular stress concentrators, particularly a crack and a V-notch. The influence of the free surface on a fatigue crack front shape is discussed here. The review part follows with the fracture mechanics description of the graded materials. The problem formulation and the main aims of the thesis are stated in the following chapter. The core of this work is the fracture mechanical description of a crack propagating near the material nonhomogeneity. The thesis focuses on a stress field description near the free surface of the body where a change in a type of the singular stress field occurs. Methods used in generalized fracture mechanics are applied here to describe the stress field near the free surface. The difference between crack behavior in thin-walled and thick-walled structures is shown and supplied by relevant examples. Methods and procedures used are later utilized for estimation of a crack behavior in graded structures. The thesis is concluded by the discussion of obtained results in appropriate context.
Evaluation of fracture test of selected core-drilled cylindrical specimen
Halfar, Petr ; Sobek, Jakub (referee) ; Keršner, Zbyněk (advisor)
The diploma thesis deals with effective crack model for a cylinder specimen with an chevron-shaped notch, loaded by a three-point bending. The first part of the thesis is theoretical and the it describes the use of fracture mechanics for quasi-brittle materials – concrete and rocks. Furthermore there is described the linear elastic fracture mechanics and founding the geometry function for a different geometries of fracture tests. The second part describes the FEM program, which was used to calculate the fracture parameters, that were used to determine the length of the effective crack and how the program was tested before it was used. The last part describe calculations of fracture toughness by using the effective crack model on selected rock and concrete specimens.

National Repository of Grey Literature : 129 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.